SySCD A System-Aware Parallel Coordinate Descent Algorithm

Nikolas Ioannou* *IBM Research* Celestine Mendler-Dünner* UC Berkeley

Thomas Parnell IBM Research

*equal contribution

$$\min_{\boldsymbol{\alpha}} f(A\boldsymbol{\alpha}) + \sum_{i} g_i(\alpha_i)$$

Parallel Coordinate Descent1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$
Initial model $\alpha = 0, v = 0$ 2: for t = 1, 2, ... do3: parfor $j \in \text{RANDOMPERMUTATION}(n)$ do4: Find δ minimizing $f(\mathbf{v} + A_{:,j}\delta) + g_j(\alpha_j + \delta)$ 5: $\alpha_j \leftarrow \alpha_j + \delta$ 6: $\mathbf{v} \leftarrow \mathbf{v} + \delta A_{:,j}$ 7: end parfor8: end for

$$\min_{\boldsymbol{\alpha}} f(A\boldsymbol{\alpha}) + \sum_{i} g_i(\alpha_i)$$

Parallel Coordinate Descent1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$
Initial model $\alpha = 0, v = 0$ 2: for t = 1, 2, ... do3: parfor $j \in \text{RANDOMPERMUTATION}(n)$ do4: Find δ minimizing $f(v + A_{:,j}\delta) + g_j(\alpha_j + \delta)$ 5: $\alpha_j \leftarrow \alpha_j + \delta$ 6: $v \leftarrow v + \delta A_{:,j}$ 7: end parfor8: end for

 $\min_{\boldsymbol{\alpha}} f(A\boldsymbol{\alpha}) + \sum_{i} g_i(\alpha_i)$

System-level bottlenecks:

- 1. Inefficient cache accesses
- 2. Write-contention on ${\bf v}$
- 3. Scalability across NUMA nodes

Parallel Coordinate Descent

1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$ Initial model $\alpha = 0, v = 0$

2: for t = 1, 2, ... do

3: **parfor** $j \in \text{RandomPermutation}(n)$ **do**

Find δ minimizing $f(\mathbf{v} + A_{:,j}\delta) + g_j(\alpha_j + \delta)$

5:
$$\alpha_j \leftarrow \alpha_j + \delta$$

6: $\mathbf{v} \leftarrow \mathbf{v} + \delta A_{:,j}$

- 7: end parfor
- 8: end for

4:

 $\min_{\boldsymbol{\alpha}} f(A\boldsymbol{\alpha}) + \sum_{i} g_i(\alpha_i)$

System-level bottlenecks:

- 1. Inefficient cache accesses
- 2. Write-contention on \mathbf{v}
- 3. Scalability across NUMA nodes

Parallel Coordinate Descent

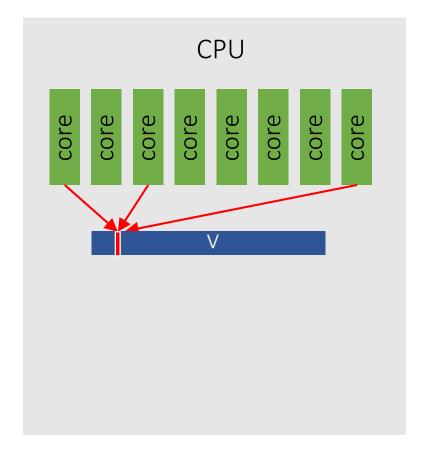
- 1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$ Initial model $\alpha = 0, v = 0$
- 2: for $t = 1, 2, \dots$ do
- 3: **parfor** $j \in \text{RandomPermutation}(n)$ **do**
 - Find δ minimizing $f(\mathbf{v} + A_{:,j}\delta) + g_j(\alpha_j + \delta)$

5:
$$\alpha_j \leftarrow \alpha_j + \delta$$

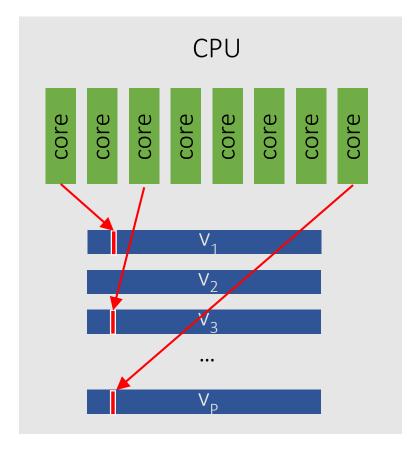
- 6: $\mathbf{v} \leftarrow \mathbf{v} + \delta A_{:,j}$
- 7: end parfor
- 8: end for

4:

Resolving write-contention on **v**



Resolving write-contention on **v**



1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$ Initial model $\alpha = 0, v = 0$

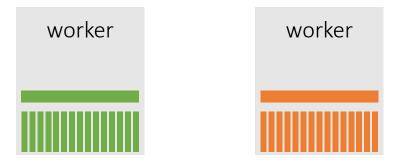
2: for t = 1, 2, ... do

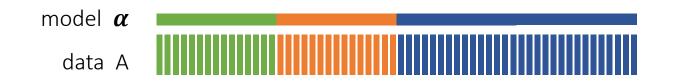
- 4: **parfor** $j \in \text{RandomPermutation}(n)$ **do**
- 5: Find δ minimizing $f(\mathbf{v} + A_{:,j}\alpha_j) + g_j(\alpha_j + \delta)$
- 6: $\alpha_j \leftarrow \alpha_j + \delta$
- 7: $\mathbf{v} \leftarrow \mathbf{v} + \delta A_{:,j}$
- 8: end parfor

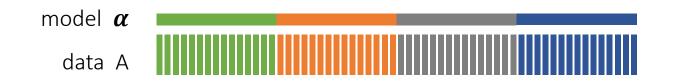
10: end for

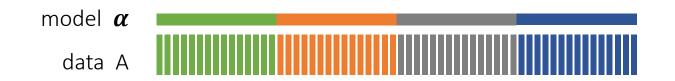
Parallel Coordinate Descent 1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$ Initial model $\alpha = 0, v = 0$ 2: for t = 1, 2, ... do // # threads $\mathbf{v}_p \leftarrow \mathbf{v} \quad \forall p \in [P]$ 3: 4: **parfor** $j \in \text{RANDOMPERMUTATION}(n)$ **do** Find δ minimizing $\hat{f}(\mathbf{v}_p, A_{:,i}, \alpha_i) + g_i(\alpha_i + \delta)$ 5: 6: $\alpha_j \leftarrow \alpha_j + \delta$ $\mathbf{v}_p \leftarrow \mathbf{v}_p + \delta A_{:,j}$ 7: 8: end parfor $\mathbf{v} \leftarrow \sum_p \mathbf{v}_p$ 9: 10: end for

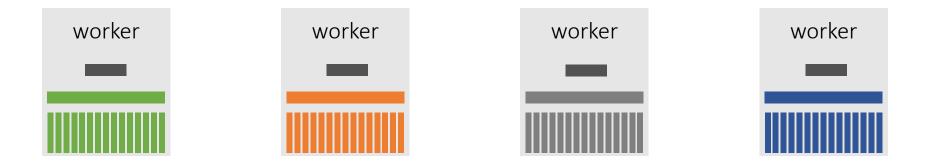
Parallel Coordinate Descent 1: Input: Training data matrix $A \in \mathbb{R}^{d \times n}$ Initial model $\alpha = 0, v = 0$ 2: **for** t = 1, 2, ... **do** *f* threads $\mathbf{v}_p \leftarrow \mathbf{v} \quad \forall p \in [P]$ 3: 4: **parfor** $j \in \text{RANDOMPERMUTATION}(n)$ **do** Find δ minimizing $\hat{f}(\mathbf{v}_p, A_{:,j}, \alpha_j) + g_j(\alpha_j + \delta)$ 5: $\alpha_j \leftarrow \alpha_j + \delta$ 6: $\mathbf{v}_p \leftarrow \mathbf{v}_p + \delta A_{:,j}$ 7: auxiliary model inspired by CoCoA [Smith'18] 8: end parfor $\mathbf{v} \leftarrow \sum_p \mathbf{v}_p$ 9: 10: end for

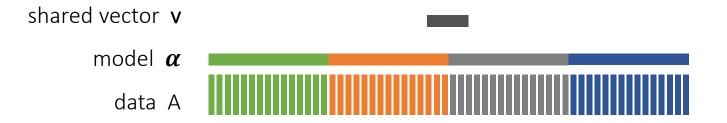


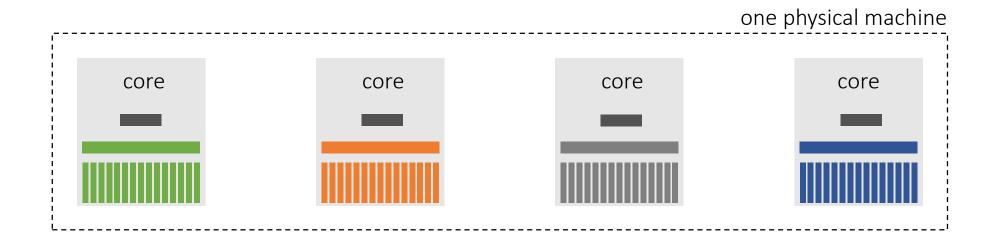


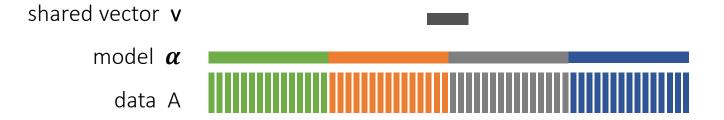




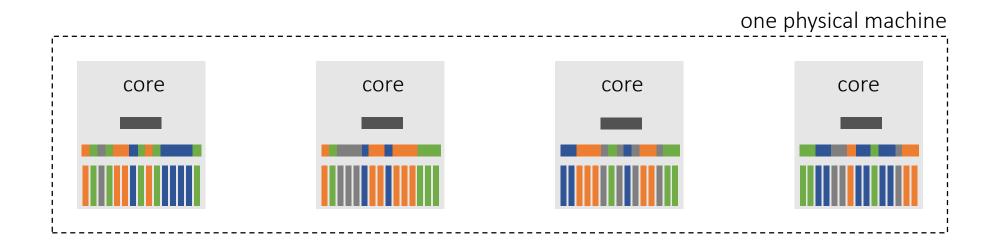


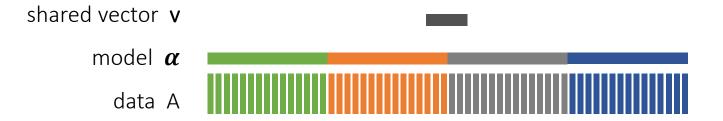




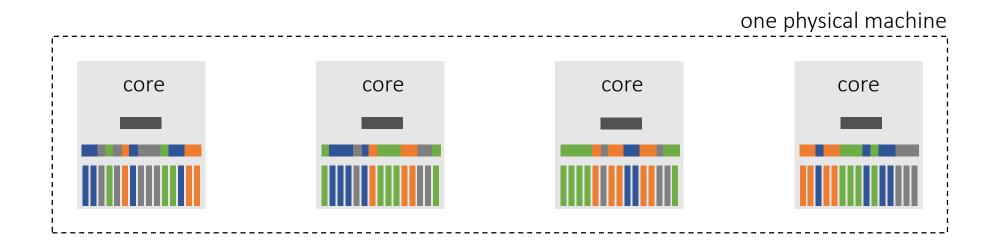


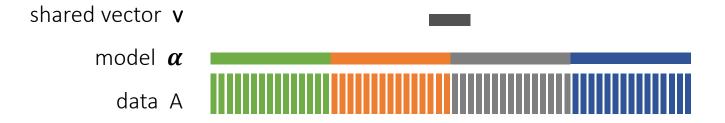
Repartitioning





Repartitioning





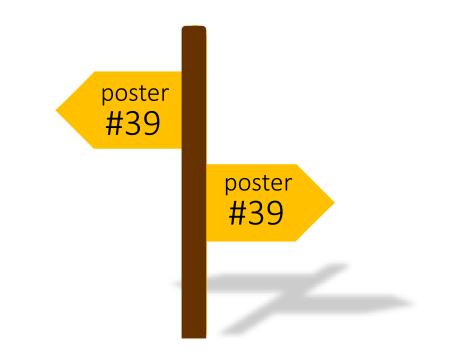
- Combination of distributed methods with repartitioning
 - \checkmark high implementation efficiency
 - \checkmark theoretically sound parallel method
 - $\checkmark\,$ scales to large degrees of parallelism

- Combination of distributed methods with repartitioning
 - ✓ high implementation efficiency
 - \checkmark theoretically sound parallel method
 - $\checkmark\,$ scales to large degrees of parallelism
- Additional optimizations (not covered in this talk)
 - ✓ NUMA affinity
 - ✓ alignment with cache access pattern

- Combination of distributed methods with repartitioning
 - \checkmark high implementation efficiency
 - \checkmark theoretically sound parallel method
 - $\checkmark\,$ scales to large degrees of parallelism
- Additional optimizations (not covered in this talk)
 - ✓ NUMA affinity
 - ✓ alignment with cache access pattern

> 10x faster than sate-of-the-art asynchronous CD methods

- Combination of distributed methods with repartitioning
 - \checkmark high implementation efficiency
 - \checkmark theoretically sound parallel method
 - \checkmark scales to large degrees of parallelism
- Additional optimizations (not covered in this talk)
 - ✓ NUMA affinity
 - \checkmark alignment with cache access pattern



> 10x faster than sate-of-the-art asynchronous CD methods

