TokenLearner

<u>Michael S. Ryoo^{1,2}</u> AJ Piergiovanni¹ Anurag Arnab¹ Mostafa Dehghani¹ Anelia Angelova¹

What is TokenLearner for?

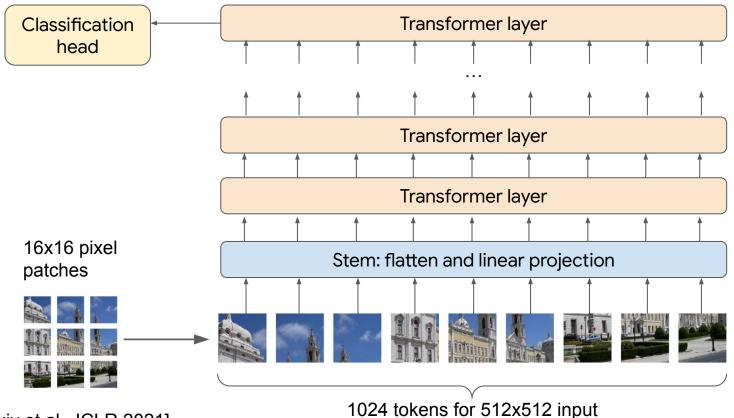
A module to go inside Vision Transformers (ViT)

Faster: TokenLearner reduces the amount of computation in Transformer models.

• Cuts the computation by $\frac{1}{2}$ or even more.

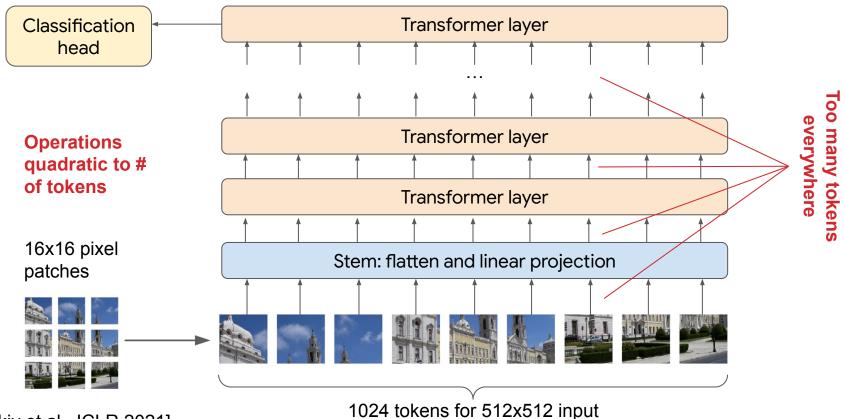
What is TokenLearner for?

A module to go inside Vision Transformers (ViT)


Faster: TokenLearner reduces the amount of computation in Transformer models.

• Cuts the computation by $\frac{1}{2}$ or even more.

Better: Simultaneously, it increases the accuracy of the models


- Better than the full ViT models on image classification and video recognition
- New SOTA on Kinetics-400, Kinetics-600, Charades, and AViD.

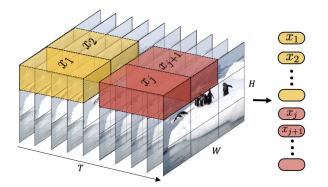
Vision Transformer (ViT)

[Dosovitskiy et al., ICLR 2021]

Vision Transformer (ViT) - Limitation

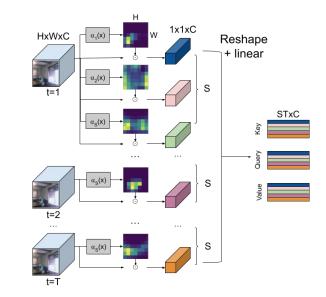
[Dosovitskiy et al., ICLR 2021]

Questions

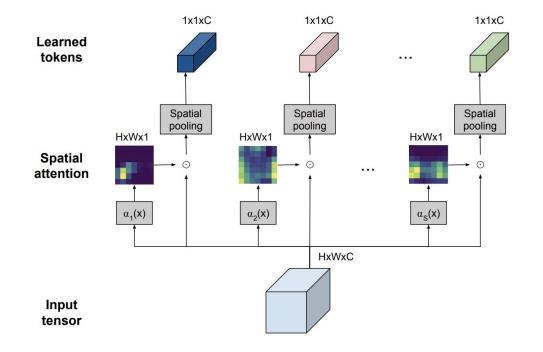

Do we really need that many tokens and process them all at every layer?

Can we not 'learn' to adaptively obtain much fewer tokens instead, and focus on processing them?

Motivation - TokenLearner


Instead of always using hand-designed tokenization, we learn to adaptively tokenize.

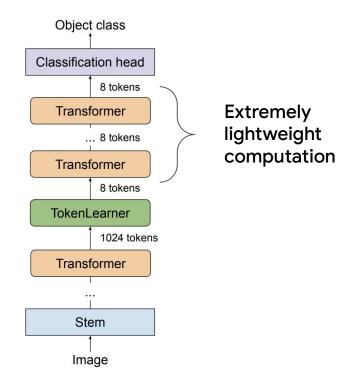
VS.


Previous tokenization for images/videos: spatio-temporal cropping (ViViT)

500 * 64 tokens

8 * 64 tokens

TokenLearner module


TokenLearner has a form of spatial attention mechanism

Given an image-like tensor, it

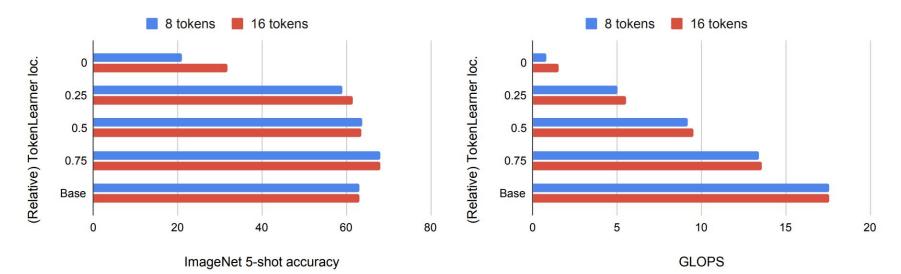
- Weights each pixel differently (i.e., focuses on a subset of pixels)
- Summarizes them as a token.
- Could be applied to intermediate tensors

Small number of tokens! 8 or 16

TokenLearner for ViT

TokenLearner module inserted in the middle of Transformer architecture

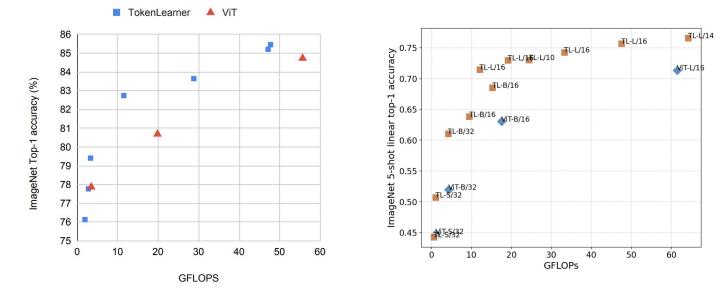
• Backbone: ViT - L/16, B/16, ...


Dataset:

- JFT for the pretraining
- ImageNet for the fine-tuning and evaluation

Where do we put TokenLearner?

ImageNet 5-shot transfer accuracy (with ViT B/16)


• Interestingly, TokenLearner performs better, while being faster. Adaptiveness!

ImageNet

Pre-train with JFT, and fine-tune (or 5-shot learn) with ImageNet1K (with S/32, B/32, B/16, L/16, ...)

Scaling up - larger models

TokenLearner added to ViT L/16 (512x512 input)

• Actual images per second on TPU: ~1400 (L/16) vs. ~2500 (TokenLearner + L/16).

Base	# layers	TokenLearner	GFLOPS	ImageNet Top1
ViT L/16	24	-	363.1	87.35
ViT L/16 ViT L/16 ViT L/16 + Fuser ViT L/14	24 24+11 24+11 24+11	16-TL at 12 16-TL at 12 16-TL at 12 16-TL at 18	178.1 186.8 191.3 361.6	87.68 87.47 87.91 88.37

Scaling up - larger models

TokenLearner added to ViT L/16 (512x512 input)

• Actual images per second on TPU: ~1400 (L/16) vs. ~2500 (TokenLearner + L/16).

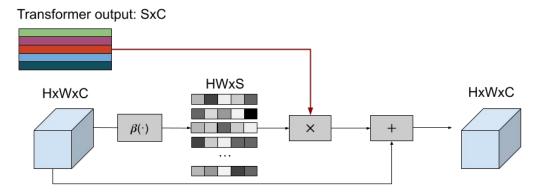
Base	# layers	TokenLearner	GFLOPS	ImageNet Top1
ViT L/16	24	- [363.1	87.35
ViT L/16 ViT L/16 ViT L/16 + Fuser ViT L/14	24 24+11 24+11 24+11	16-TL at 12 16-TL at 12 16-TL at 12 16-TL at 18	178.1 186.8 191.3 361.6	87.68 87.47 87.91 88.37

Scaling up - larger models

TokenLearner added to ViT L/16 (512x512 input)

• Actual images per second on TPU: ~1400 (L/16) vs. ~2500 (TokenLearner + L/16).

Base	# layers	TokenLearner	GFLOPS	ImageNet Top1
ViT L/16	24	-	363.1	87.35
ViT L/16 ViT L/16 ViT L/16 + Fuser ViT L/14	24 24+11 24+11 24+11	16-TL at 12 16-TL at 12 16-TL at 12 16-TL at 18	178.1 186.8 191.3 361.6	87.68 87.47 87.91 88.37

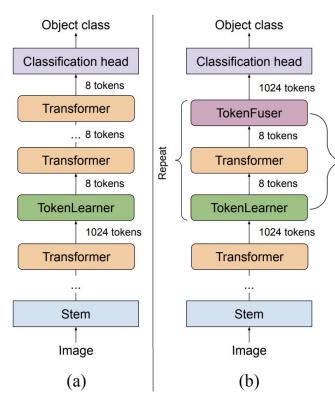

Scaling up - heavier models

ImageNet comparison against the SOTA Transformer models

• L/8 is with the same model size but with 4x larger number of initial tokens.

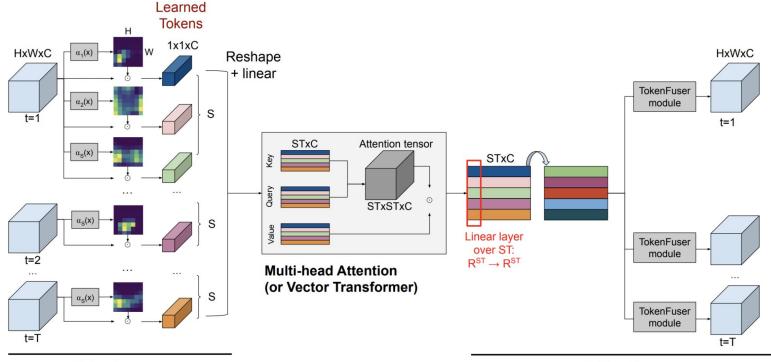
Method	# params.	ImageNet	ImageNet ReaL
BiT-L	928M	87.54	90.54
ViT-H/14	654M	88.55	90.72
ViT-G/14	1843M	90.45	90.81
TokenLearner L/10 (24+11)	460M	88.5	90.75
TokenLearner L/8 (24+11)	460M	88.87	91.05

TokenFuser module



TokenFuser recombines tokens to recover the original input shape.

It learns to generate fusion weights per pixel location, conditioned on the input tensor.

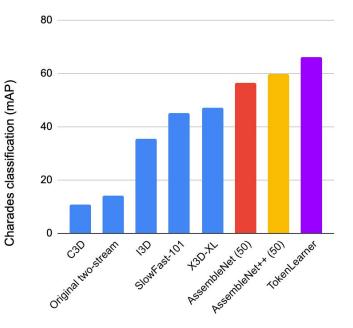

ViT architecture with TokenFuser

computation

	Base	# layers	TokenLearner	TokenFuser	ImageNet Top1	ImageNet ReaL	GFLOPS
Lig	B/16	12	8-TL at 6	N	83.2	88.1	28.3
	B/16	12	8-TL at 6	Y	83.7	88.4	28.5
Lightweight	B/16	12	16-TL at 6	N	83.2	88.0	28.7
	B/16	12	16-TL at 6	Y	83.9	88.7	29.1
ight	L/16	24	16-TL at 12	N	87.6	90.4	184.6
	L/16	24	16-TL at 12	Y	87.6	90.5	187.1
	L/16	24	8-TL at 18	N	87.9	90.8	273.2
	L/16	24	8-TL at 18	Y	88.2	90.9	273.8
	L/10	24+11	16-TL at 18	N	88.5	90.7	849.0
	L/10	24+11	16-TL at 18	Y	88.5	90.9	856.9

Video architecture with TokenFuser

TokenLearner

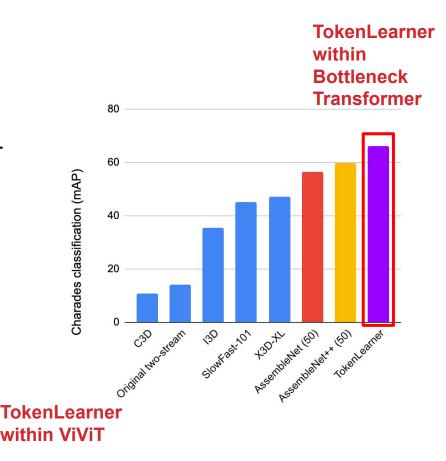

TokenFuser

Video datasets

Kinetics400, Charades, and AViD

- Compared against prior works, including ViViT
- 85.4% on Kinetics400 is the new SOTA.

Ś	Method	Accuracy	GFLOPS
results	ViViT-L/16 ViViT-L/16 320	82.8 83.5	1446 3992 2081
	ViViT-H/14 ViViT-L/16 (our run)	84.8	3981 1446
Kinetics400	TokenLearner 16at12 + L/16 TokenLearner 8at18 + L/16 TokenLearner 16at18+ L/14 TokenLearner 16at18+ L/10	83.5 84.5 84.7 85.4	766 1105 1621 4076



Video datasets

Kinetics400, Charades, and AViD

- Compared against prior works, including ViViT
- 85.4% on Kinetics400 is the new SOTA.

Ś	Method	Accuracy	GFLOPS
results	ViViT-L/16	82.8	1446
es E	ViViT-L/16 320	83.5	3992
	ViViT-H/14	84.8	3981
Kinetics400	ViViT-L/16 (our run)	83.4	1446
ü	TokenLearner 16at12 + L/16	83.5	766
<u>e</u>	TokenLearner 8at18 + L/16	84.5	1105
ž.	TokenLearner 16at18+ L/14	84.7	1621
	TokenLearner 16at18+ L/10	85.4	4076

Method	Top-1 accuracy	total GFLOPS		
R(2+1)D [39]	73.9	304 × 115	Method	Top-1
SlowFast 16x8, R101+NL [13]	79.8	234×30	SlowFast 16x8, R101+NL [13]	81.8
TimeSformer-L [3]	80.7	2380×3	X3D-XL [12]	81.9
ViViT-L/16 [2]	82.8	1446×12	TimeSformer-HR [3]	82.4
Swin-L [24]	83.1	604 × 12	ViViT-L/16 [2]	84.3
Swin-L (384) [24]	84.6	2107×12	Swin-B [24]	84.0
Swin-L (384) [24]	84.9	2107×50	Swin-L (384) [24]	85.9
TokenLearner 16at12 (L/16)	82.1	766 × 6	Swin-L (384) [24]	86.1
TokenLearner 8at18 (L/16)	83.2	1105×6	TokenLearner 16at12 (L/16)	84.4
TokenLearner 16at12 (L/16)	83.5	766 × 12	TokenLearner 8at18 (L/16)	86.0
TokenLearner 8at18 (L/16)	84.5	1105×12	TokenLearner 16at18 (L/10)	86.1
TokenLearner 16at18 (L/14)	84.7	1621 × 12	TokenLearner 16at18 w. Fuser (L/10)	86.3
TokenLearner 16at18 (L/10)	85.4	4076×12		

Comparison to SOTA (Kinetics 400)

Comparison to SOTA (Kinetics 600)

Top-5

95.1

95.5

96.0

96.2

96.5

97.1

97.3

96.0

97.0

97.0

97.0

total GFLOPS

 234×30

 48×30

 1703×3

 1446×12

 282×12

 2107×12

 2107×50

766 × 12

 1105×12

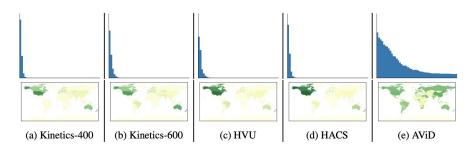
 4076×12

 4100×12

Charades results

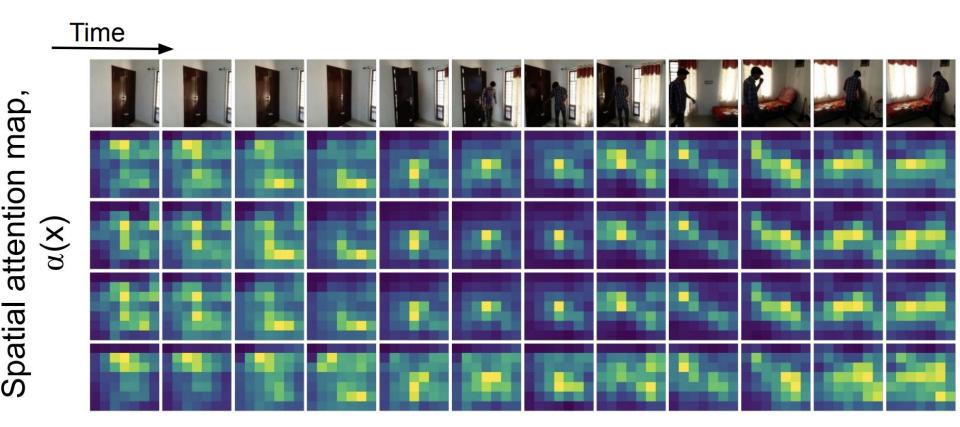
Longer videos

- ~30 seconds
- 360 frames with 12 fps


Method	Input	Pre-train	mAP
I3D [5]	RGB	Kinetics	32.9
I3D from [39]	RGB	Kinetics	35.5
I3D + Non-local [39]	RGB	Kinetics	37.5
EvaNet [25]	RGB	Kinetics	38.1
STRG [40]	RGB	Kinetics	39.7
LFB-101 [42]	RGB	Kinetics	42.5
SGFB-101 [19]	RGB	Kinetics	44.3
SlowFast-101 [12]	RGB+RGB	Kinetics	45.2
AssembleNet-50 [29]	RGB+Flow	None	47.0
Multiscale ViT [10]	RGB	Kinetics	47.7
AssembleNet-101 [29]	RGB+Flow	Kinetics	58.6
AssembleNet++ [28] (w/o object)	RGB+Flow	None	55.0
MoViNets [22]	RGB	None	63.2
Backbone (X(2+1)D-M)	RGB	None	62.7
Ours	RGB	None	66.3

AViD dataset results

Anonymous Videos from Diverse Countries


- 467k videos and 887 action classes
- 3-15 sec per video

Method	Accuracy
I3D [5]	46.5
(2+1)D ResNet-50	46.7
3D ResNet-50	47.9
SlowFast-50 4x4 [12]	48.5
SlowFast-50 8x8 [12]	50.2
SlowFast-101 16x4 [12]	50.8
Backbone (X(2+1)D-M)	48.6
X(2+1)D-M w/ joint space-time module (like [2])	53.1
Ours	53.8

Visualizing spatial attention in TokenLearner

Visualizing spatial attention in TokenLearner

and	MA	20	A	-	R	T		2	
	-	-	-	-		-			
			-	-	-		-		
-	-		-	-		-			
	-		-	Ц				2	

Thank you for listening.

Michael Ryoo mryoo@google.com

AJ Piergiovanni ajpiergi@

Anurag Arnab aarnab@

Mostafa Dehghani dehghani@

Anelia Angelova anelia@