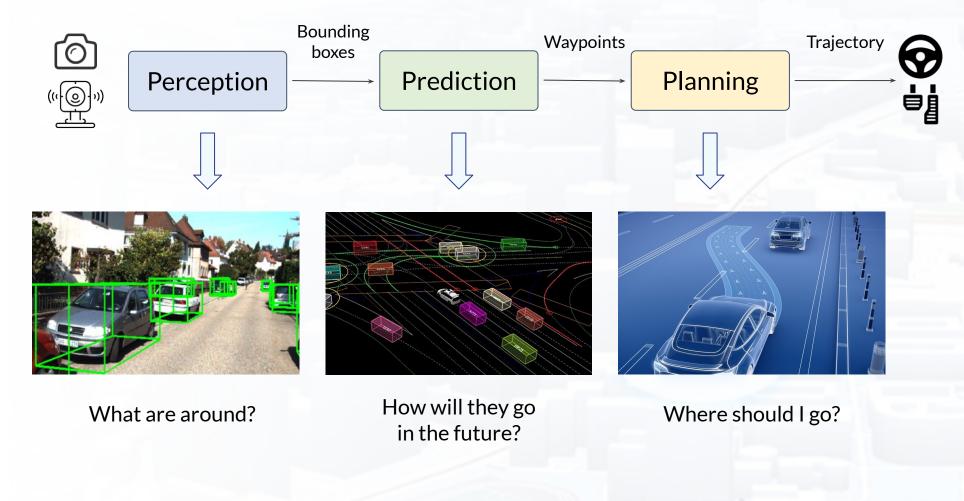
SimGen:

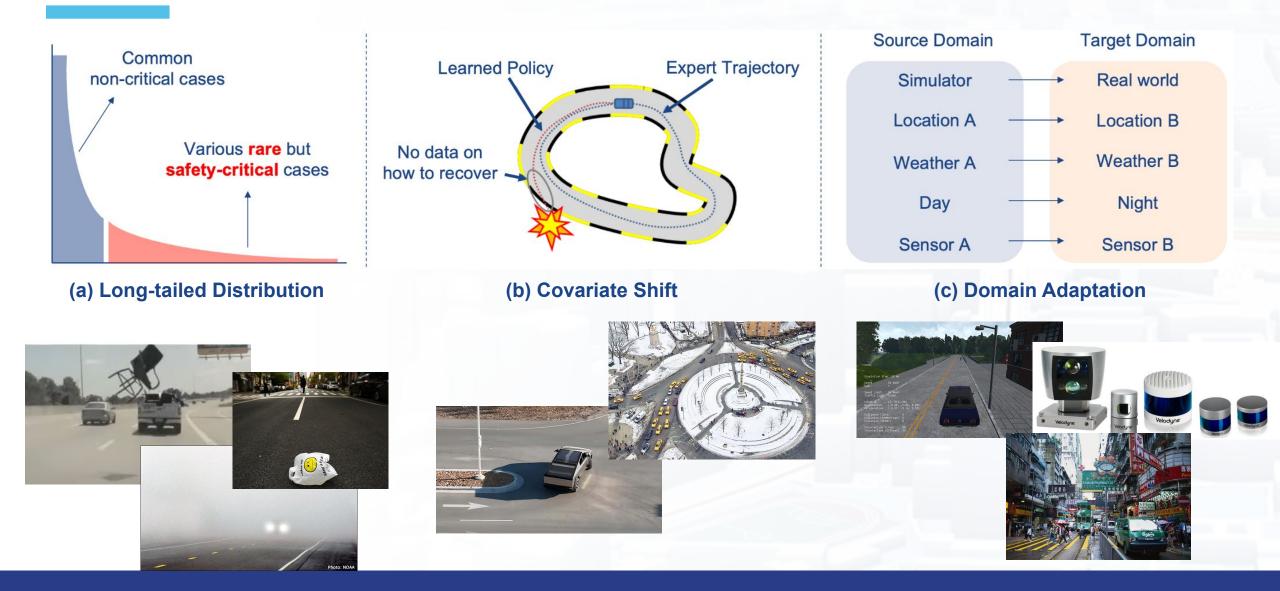
Simulator-conditioned Driving Scene Generation

(A 60 min Talk)

Online


June 2024

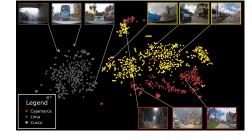
Yunsong Zhou


Problem setting | Autonomous Driving (AD) Tasks

Challenge | Various weathers, illuminations, and scenarios

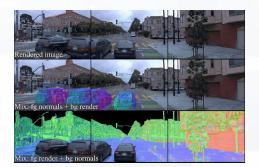
Challenge - Robustness and Generalization

Motivation | Synthetic Data Generation for Driving


Real Data Collection

- Costly and laborious to collect and annotate the data
- Collecting data on dangerous driving can even pose a risk to life

Credit to Seeing Machines

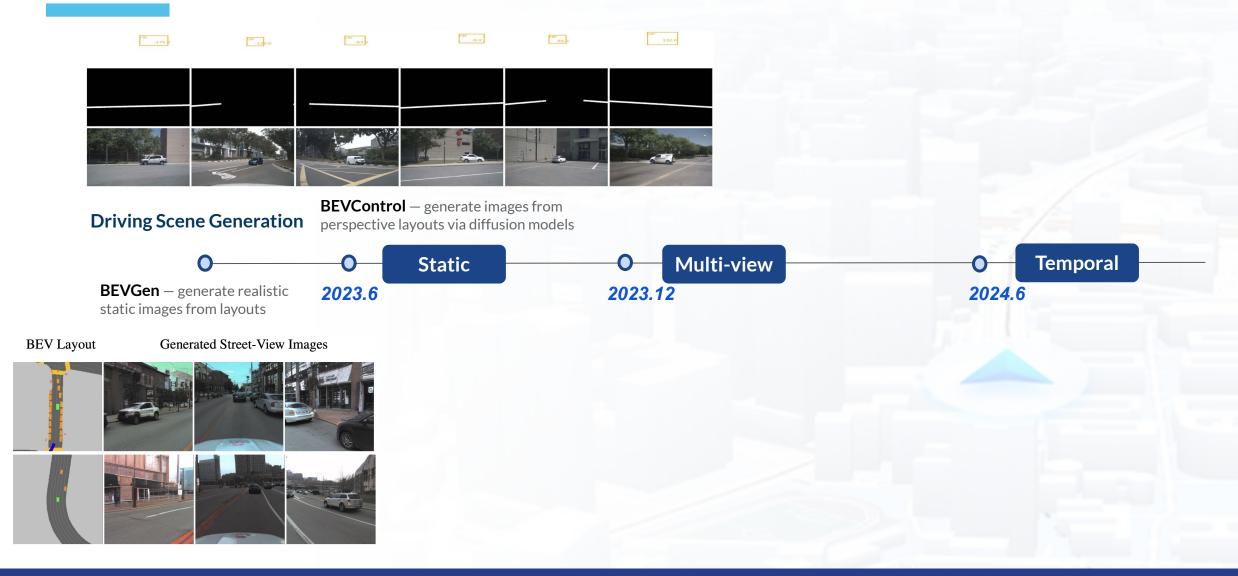


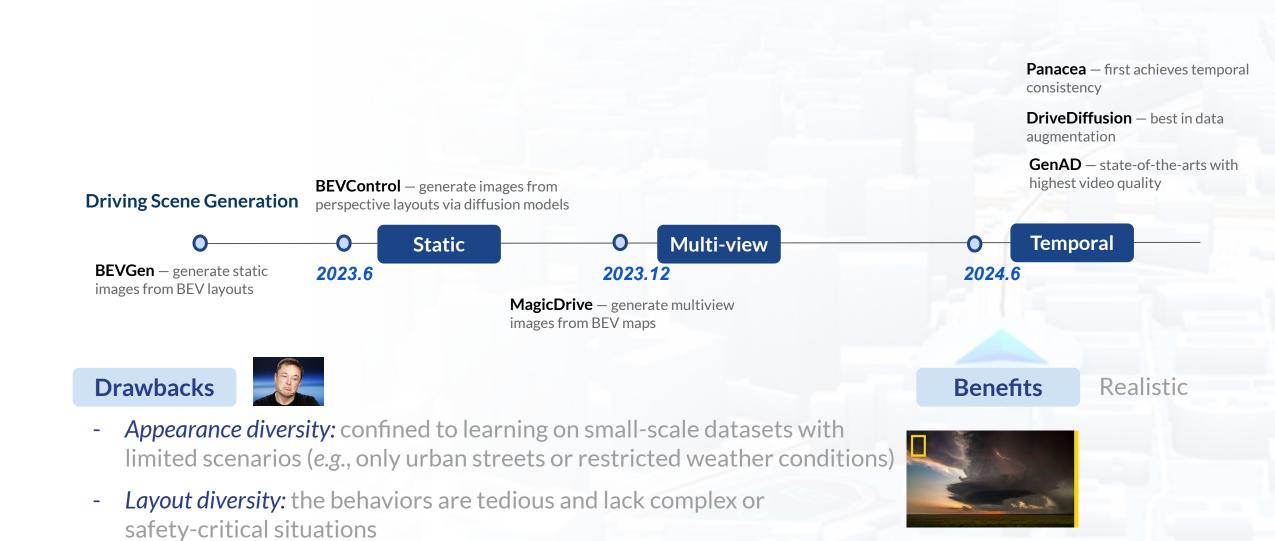
Synthetic Data Generation

- A promising alternative to harvest annotated training data

Simulators

Generative Models





Credit to UniSim, Sora, GenAD

MetaDrive – composing driving scenarios for generalizable reinforcement learning

2022

CARLA – supporting development, training, and validation of autonomous driving systems

Benefits

Layout diversity: effortlessly generate scenes with various behaviors and provide accurate control over all objects

Drawbacks

Appearance diversity: only contain a limited amount of 3D assets, and they lack a realistic visual appearance

SimGen: Simulator-conditioned Driving Scene Generation

Yunsong Zhou^{1,2} Michael Simon¹ Zhenghao Peng¹ Sicheng Mo¹ Hongzi Zhu² Minyi Guo² Bolei Zhou^{1†}

¹ University of California, Los Angeles ² Shanghai Jiao Tong University

Credit to metadriverse.github.io/simgen

Insights | Simulator-conditioned Generative Model

- We propose a *controllable* and *diverse* scene generation paradigm through the simulator-conditioned generative model, SimGen.
- It learns from **real-world** and **simulated** data and then generate diverse driving scenes based on the simulator's control conditions and rich text cues.

SimGen - The Big Picture

DIVA Dataset

In-the-wild Driving Videos

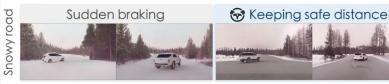
Virtual Data

Partial photo by courtesy of online resources.

Cascaded Diffusion Model

for autonomous driving

How to formulate?


Simulation-to-Reality (Sim2Real) Gaps?

Applications

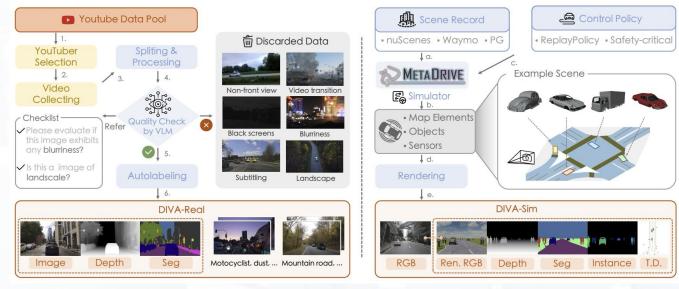
Data Augmentation

Closed-loop Evaluation

Hoving to the right slowly

DIVA Dataset - Appearance and Layout Diversity

Comparisons


DIVA is the best on scale, diversity, and annotations

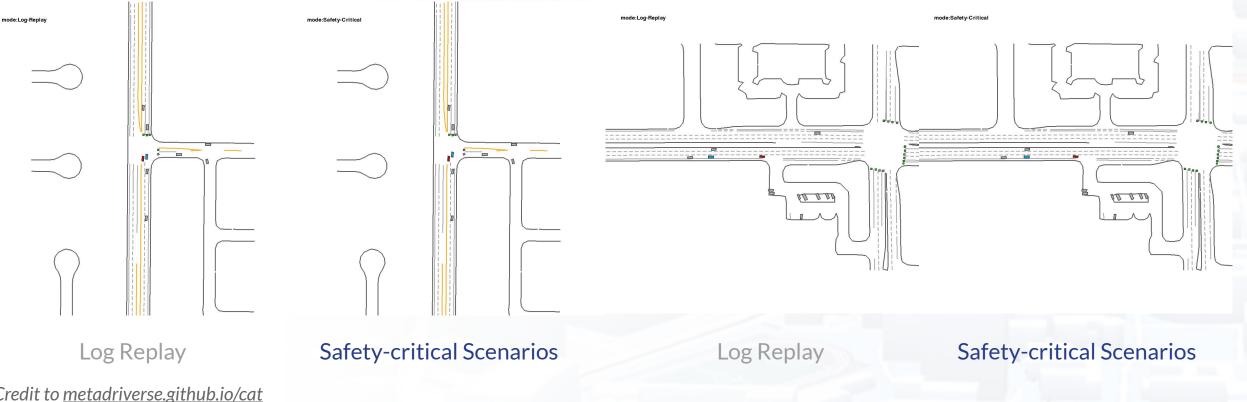
Dataset	Time	Frames	Cts.	Cities	Annotations					
	(hours)				Text	Depth	Seg.	Virt.		
KITTI [18]	1.4	15k	1	1		1	1			
CityScapes [11]	0.5	25k	3	50			1			
Waymo* [58]	11	390k	1	3			1			
Argoverse 2* [67]	4.2	300k	1	6						
nuPlan [*] [7]	120	4.0M	2	4						
Honda-HAD [26]	32	1.2M	1	-	1					
nuScenes [6]	5.5	241k	2	2			1			
DIVA-Real	120	4.3M	19	71	1	1	1			
DIVA-Sim	27.5^{+}	998k ⁺	3	5	1	1	1	1		
DIVA (All)	147.5	5.3M	22	76	1	1	1	1		

Construction

Including in-the-wild and virtual driving videos

- Full auto labeling

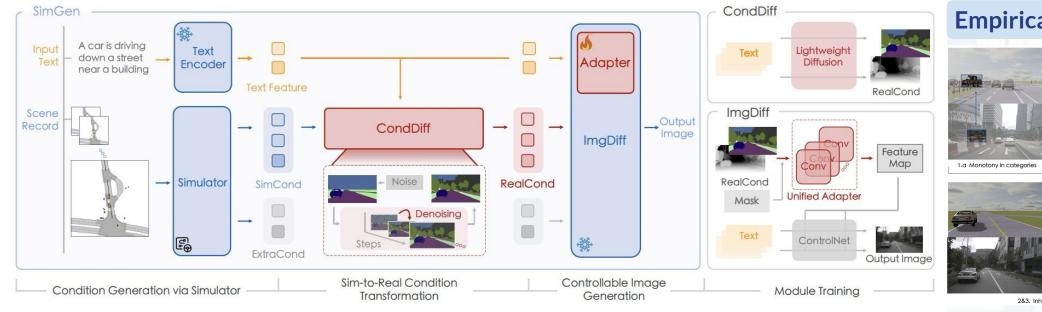
Examples


DIVA Dataset - Appearance and Layout Diversity

Examples of Generative Adversarial Scenarios

DIVA Dataset - Appearance and Layout Diversity

Examples of Generative Adversarial Scenarios


Credit to metadriverse.github.io/cat

SimGen - Overview

- Input: text and scene record _
- Stage 1 (CondDiff): converts SimCond into RealCond, representing real depth and segmentation
- Stage 2 (ImgDiff): an Adapter merges multi-source conditions into a unified control condition and generates driving scene images.

Dataset	RealCond	SimCond	ExtraCond
nuScenes	1		
DIVA-Real	1		
DIVA-Sim		1	1

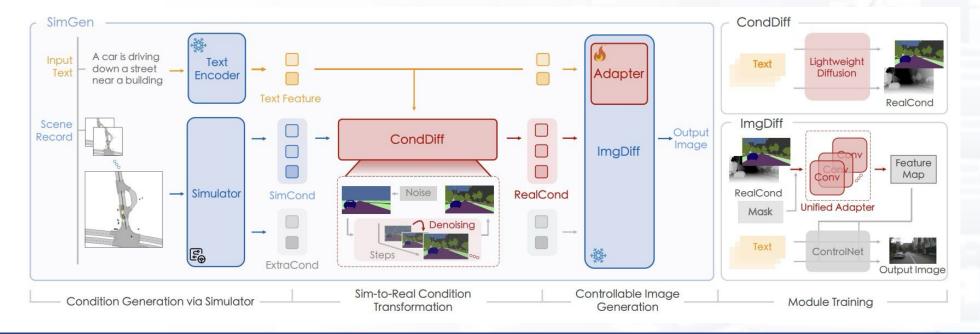
Real/SimCond: depth and segmentation; ExtraCond: rendered RGB, instance maps, and top-down views

Empirical Study

1.b Variation in positions 1 Mismatches

1.c Occlusion

2&3. Inherent flaws of 3D models and missing backgrounds

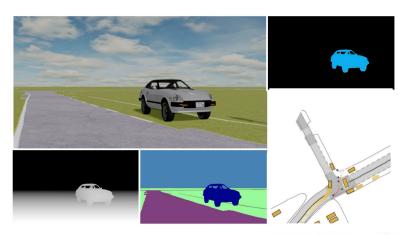

SimGen - Overview

CondDiff

- Naive approach: training a domain transfer model requires paired data far exceeding public datasets
- Ours: CondDiff injects noise-added SimCond into the intermediate sampling process and converts it into realistic conditions via continuous denoising

ImgDiff

- ExtraCond offers additional information but exists condition conflicts
- Ours: mapping variable conditions into fixed-length vectors and enabling a unified control input interface



Quantitative Results

Quality		Dive	ersity	Controllability					Applications on data augmentation					
Method	Dataset	FID↓	$D_{ m pix}\uparrow$	Method	Map Seg		Object Detection		Method	Map Seg		Object Det		
BEVGen [60]		25.5			mIoU _{Road}	mIoU _{Vehicle}	AP _{Car}	AP _{Truck}		mIoU _{Road}	$m Io U_{Vehi}$	AP _{Car}	AP _{Truck}	
BEVControl [72] MagicDrive [17]	nuScenes	24.9 16.6	- 19.7	Oracle	72.2	34.6	47.0	21.4	Baseline	72.2	34.6	47.0	21.4	
Panacea [65]	nubeeneb	17.0	-	BEVGen [60]					BEVGen [60]	71.9	34.2	47.3		
DrivingDiffusion [33]		15.9	20.1	MagicD. [17]	58.6 (-13.6)	29.5 (-5.1)	37.3 (-9.7)	17.3 (-4.1)	MagicD. [17]	77.4	37.7	48.0	22.8	
SimGen-nuSc SimGen	nuScenes DIVA	15.6 15.6	20.5 26.6	SimGen-nuSc SimGen	. ,			18.1 (-3.3) 19.6 (-1.8)	SimGen-nuSc SimGen	77.7 78.9	38.0 39.0	48.3 49.1	23.0 23.6	

Diverse Appearances

Conditions

SimGen-nuSc

Desert

Barcelona

Miami

Columbia

Chicago

Diverse Appearances

Downtown Atlanta

Berlin

Switzerland

Mountains

At dusk

Diverse Appearances

Diverse Appearances

In the fall

Manila

Midnight

Blue sedan

Kuala lumpur

Blizzard days

Diverse Appearances

LEGO

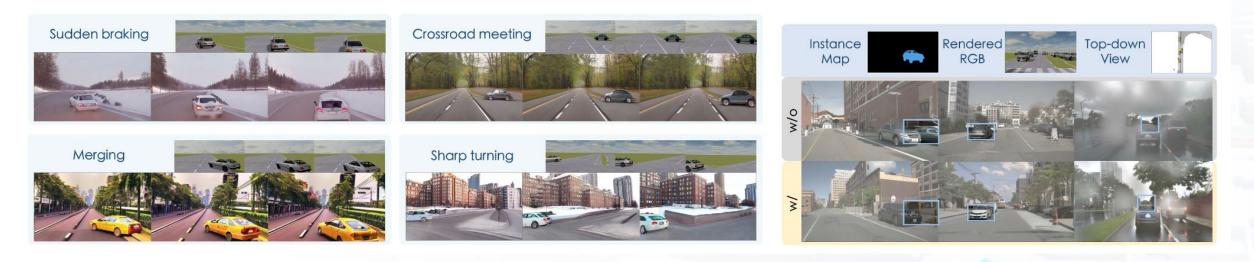
Ukiyo-e

Minecraft

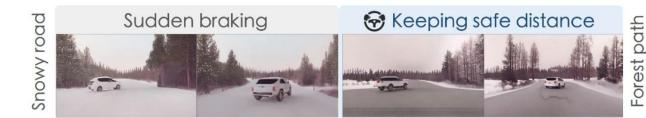
Super Mario

Diverse Appearances

LEGO


Ukiyo-e

Minecraft


Super Mario

Safety-critical Layouts

Efficiency of Simu-conditions

Applications on Closed-loop Evaluation

Hoving to the right slowly

Conclusions

Grab-and-go

- A simulator-conditioned diffusion model, SimGen, that learns to generate diverse driving scenarios by mixing data from the simulator and the web.
- A novel dataset containing massive web and simulated driving videos that ensure diverse scene generation and advanced simulation-to-reality research is collected.

Limitations

- SimGen is not designed for video generation.
- SimGen does not cope with common settings such as multi-view generation.
- Inheriting the drawbacks of diffusion models, SimGen suffers from long inference time, which may impact the applications like closed-loop training.

